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Overview

▶ We know some quantum and classical algorithms.

▶ Usual way to understand them: Keep track of memory
states for each possible input.

▶ We will discuss an alternative, where we keep track of
collections of memory states, modulo equivalences.

▶ Formally (pure-state quantum): The matrix of inner
products (Gram matrix) of wavefunctions for different
possible inputs.
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▶ An agent interacts with its environment in discrete time

▶ Goal: Determine a policy (sequences of transformations)
that converts given inital state |Ψ0⟩ into a desirable
target state |ΦT ⟩ (or lower-bound T necessary)

▶ |Ψ0⟩ and |ΦT ⟩ contain information about both state of
environment and knowledge about environment
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U i , O are matrices/linear maps, we don’t restrict to
norm-preserving for technical reasons

▶ classical: substochastic (R≥0-valued, L1-nonincreasing),

▶ pure-state quantum: contractions (C-valued,
L2-nonincreasing),

▶ mixed-state quantum: completely positive
trace-nonincreasing(ignored in this talk, but possible in
the formalism)
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Assumption: Internal computation much cheaper than
interaction:

▶ Workspace W arbitrarily large,

▶ Circuit complexity of U i not counted.
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. . . . . .

. . . . . .

. . . . . .

D

O O

D

A

Q

U0 U j UT

Q

W W

j = 1, . . . ,T − 1

|Ψ0⟩ |Φ0⟩ |Ψ1⟩ |Ψj⟩ |Φj⟩ |Ψj+1⟩ |ΨT ⟩ |ΦT ⟩

▶ Explore-exploit tradeoff/Multi-armed bandit

▶ Quantum/classical time-optimal control

▶ Robot cooks from fridge
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Special case: Query problems
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▶ evolution law O allows ”read-only” access to state
(O =

⊕
x∈D Ox block-diagonal in D)

▶ Goal is to learn something about environment x ∈ D.

▶ Whether this is achieved can be judged by the final state
|ΦT ⟩, where the agent’s state (on QW ) should be
correlated to the environment’s state
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▶ Query algorithms, e.g. Grover’s algorithm (as internal
computations are cost-free)

▶ Learning of quantum oracles,

▶ Classical: Active learning/Optimal experimental design
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Example

▶ Search: Ox is a ”harddisk” with n bits, input is address i ,
output is bit xi , 1 bit set to 1, the others are 0.

▶ Classically: Need to query half the bits in the harddisk to
find the 1.

▶ Quantumly, ∼
√
n queries are necessary and sufficient

by querying in superposition (lower bound for
unstructured search/Grover’s algorithm).
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Example/Why query model?

▶ Noone can prove time complexity lower bounds for NP
search problems, but proving n/2 lower bound for classical
or ∼

√
n lower bound for quantum search isn’t too hard.

▶ But it still pertains to optimization/search problems! We
can rule out that a quantum algorithm that treats the
search space as a ”black box” attains more than a
quadratic speedup.

▶ The adversary bound is a lower-bound method
generalizing the unstructured search lower bound to other
problems.
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States, state collections, states of knowledge
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▶ |Ψ⟩ determines next-round accessible states, agent’s
knowledge about D

▶ Equivalence relation: (|ψx⟩)x∈D equivalent to (|ψ′
x⟩)x∈D

iff agent can transform states into each other in memory
with allowed U ′, U :

(|ψx⟩)x∈D = (U ′ |ψ′
x⟩)x∈D ,

(|ψ′
x⟩)x∈D = (U |ψx⟩)x∈D

▶ Math fact, only for pure-state quantum:
(|ψx⟩)x∈D , (|ψ′

x⟩)x∈D are equivalent iff Gram matrices
(matrices of inner products) are equal:

(⟨ψx |ψy⟩)x ,y∈D =
(
⟨ψ′

x |ψ′
y⟩
)
x ,y∈D (1)

▶ So info in
[
(|ψx⟩)x∈D

]
∼ is equivalent to (⟨ψx |ψy⟩)x ,y∈D ,

and S+D is equivalent to possible Gram matrices, i.e. set
of positive semidefinite matrices
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p → p,
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p′ → p′).

▶ well-defined, + commutative, allows convex
combinations

▶ For Gram matrices (pure-state quantum): Regular convex
combinations

▶ If G1 ∈ S+D is reachable from G0 ∈ S+D in k queries,
and G ′

1 ∈ S+D is reachable from G ′
0 in k queries, then

pG1 + p′G ′
1 is reachable from pG0 + p′G ′

0 in k queries as
well by conditional execution
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State conversion and the Gram matrix picture

. . . . . .

. . . . . .

Q

U0

Ox

U j

Ox

UT

Q

W W

j = 1, . . . ,T − 1

|ψ0⟩ |ϕ0
x⟩ |ψ1

x⟩ |ψj
x⟩ |ϕj

x⟩ |ψj+1
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x ⟩ |ϕT
x ⟩

▶ To understand what function evaluation problems can be
solved with error 1/3 in T queries, we need to answer two
questions:

1. What combinations of final states
(
|ϕTx ⟩

)
x∈D are

reachable in T queries?
2. Output condition: What combinations of final states(

|ϕTx ⟩
)
x∈D would permit an accurate measurement of

some function f ?
▶ State conversion problem (Lee et al. 2011 [1]): (How)

can we convert initial states (|ϕ0
x⟩)x∈D to final states(

|ϕT
x ⟩
)
x∈D in T queries?
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Adversary bound

▶ Now talking about Gram matrices, but this can be
generalized to general states of knowledge as above

▶ Suppose that GT can be reached from G0 in T queries,
i.e. G0 → G1, G1 → G2, . . ., GT−1 → GT is possible in 1
query each.

▶ Add initial/final Gram matrices (convexity):∑T−1
j=0 Gj →

∑T−1
j=0 Gj + GT − G0 is possible in 1 query as

well, achieving a Gram matrix change of U1

▶ Let G :=
∑T−1

j=0 Gj . This is a Gram matrix as well (of
direct sum of intermediate states) and fulfills

1. G → G + GT − G0 possible in 1 query,
2. Diagonal entries G [x , x ] ≤ T .
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Adversary bound

▶ Let G :=
∑T−1

j=0 Gj . Then G fulfills

1. G → G + GT − G0 possible in 1 query,
2. Diagonal entries G [x , x ] ≤ T ⟨ψ0

x |ψ0
x⟩ = T .

▶ So the following is a lower bound on the number of
queries needed to transform G0 to GT :

minimize max
x∈D

G [x , x ] (2)

subject to G → G + GT − G0 possible in 1 query (3)

where G is GM of some state collection. (4)
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Convex optimization duality

minimize max
x∈D

G [x , x ] (5)

subject to G → G + GT − G0 possible in 1 query (6)

where G is GM of some state collection. (7)

▶ It turns out this is a convex optimization problem,
more specifically a semidefinite program. By the theory
of convex duality, the optimal value is equal to the
optimal value of a related maximization problem.

▶ This means that finding any feasible solution to the
maximization problem yields a lower bound on the
number of queries needed.

▶ For classical probability theory/mixed-state quantum: Not
so easy, because space is infinite-dimensional
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(Newer) universal algorithm
▶ Now assume we have some valid G for the optimization

problem (for which G → G + GT − G0 is possible in 1
query), and try to turn it into an algorithm.

▶ Assume also that ”doing nothing in 1 query”, i.e.
transforming G → G , is possible for all G .

▶ For any integer T ′ > 0, we can transform G0 + G/T ′ to
GT + G/T ′ in T ′ steps by going in a ”straight line”:

G0 +
G

T ′ → G0 +
G + (GT − G0)

T ′

→ G0 +
G + 2(GT − G0)

T ′ → . . .→ GT +
G

T ′ .

▶ As T ′ → ∞, initial and final states converge to G0 or GT .
→ Approximate solution of state conversion problem
G0 → GT
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Conclusion (Universal algorithm)
▶ Instead of as a sequence of states/transformations, we

can understand a quantum (query) algorithm as a
sequence of feasible matrices of inner products (Gram
matrices) or equivalence classes of states (states of
knowledge).

▶ We may consider/optimize over a ”coarse-grained
version” of an algorithm, G .

▶ Knowing G allows algorithms that approximate the
desired target state.

▶ Compared to previous universal algorithms: Generalizes to
control algorithms, better prefactor, avoids some
restrictions of previous approaches.

▶ Idea of the new universal algorithm, compared to older
ones based on states-and-unitaries:
1. Change initial states to more convenient ones in the

”Gram matrix picture”,
2. bound error incurred by that in ”states-and-unitaries

picture”.
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Open problems

▶ Find other query algorithms from ”Gram matrix picture”

▶ Make SOK algebra for classical states lower-dimensional
(e.g. by law of large numbers)

▶ Applications, e.g. re-prove quantum Chernoff bound

▶ Any ideas? Let’s have another call :)

▶ fi1w+qudent@outlook.com

▶ Thanks to Alexander Belov
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Bonus: Algebra of SOKs/Formalizing reachability

[
(|ψx ,q⟩)x∈D

]
∼ +

[
(|ψ′

x⟩)x∈D
]
∼ :=

[
(|ψx⟩ ⊕ |ψ′

x⟩)x∈D
]
∼[

(|ψx⟩)x∈D
]
∼ ∗
[
(|ψ′

x⟩)x∈D
]
∼ :=

[
(|ψx⟩ ⊗ |ψ′

x⟩)x∈D
]
∼

▶ Well-defined, commutative, associative and distributive
on the equivalence classes.

▶ On Gram matrices: +∗ are entrywise sums/products

▶ Suppose our oracle Ox just emits a new state in each
query, i.e. Ox = |θx⟩, maps |ψx⟩ → |θx⟩ ⊗ |ψx⟩

▶ This corresponds to transforming SOKs/Gram matrices
Gψ → Gψ ∗ Gθ
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Gψ,q = Gψ

}

▶ For control theory: need to generalize partial trace of
Gram matrices



Bonus: Algebra of SOKs/Formalizing reachability

∑
q∈Q

[
(|ψx ,q⟩)x∈D

]
∼ :=

(∑
q∈Q

|q⟩ ⊗ |ψx⟩

)
x∈D


∼[

(|ψx⟩)x∈D
]
∼ ∗
[
(|ψ′

x⟩)x∈D
]
∼ :=

[
(|ψx⟩ ⊗ |ψ′

x⟩)x∈D
]
∼

▶ Suppose our oracle Ox emits a new state in each query
based on query, i.e. maps Ox =

∑
q∈Q |q⟩ ⟨q| ⊗ |θx ,q⟩

▶ Then states reachable by reversible transformations are{∑
q∈Q

Gψ,q ∗ Gθ,q |
∑
q∈Q

Gψ,q = Gψ

}

▶ For control theory: need to generalize partial trace of
Gram matrices



References

▶ Barnum-Saks-Szegedy ”Quantum query complexity and
semi-definite programming”: does this specifically for
Gram matrices/pure-state quantum query algorithms

▶ https://arxiv.org/abs/2212.04606 formalizes the algebra
of knowledge in detail (draft)

▶ https://arxiv.org/abs/2211.16293 discusses the universal
algorithm for control theory in the Gram matrix picture
(equivalent to reduced density matrices)

▶ Belovs-Y. https://arxiv.org/abs/2301.02003 discusses the
algorithm in a more ”traditional” way as part of the
introduction of ”Las Vegas complexity”



Troy Lee, Rajat Mittal, Ben W Reichardt, Robert Špalek,
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