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We know some quantum and classical algorithms.

Usual way to understand them: Keep track of memory
states for each possible input.

We will discuss an alternative, where we keep track of
collections of memory states, modulo equivalences.

Formally (pure-state quantum): The matrix of inner
products (Gram matrix) of wavefunctions for different
possible inputs.
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» An agent interacts with its in discrete time

» Goal: Determine a policy (sequences of transformations)
that converts given inital state [W°) into a desirable
target state |®7) (or lower-bound T necessary)

» |W% and |®T) contain information about both state of
environment and knowledge about environment
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j=1,...,T—1
U, O are matrices/linear maps, we don't restrict to
norm-preserving for technical reasons
» classical: substochastic (R>o-valued, Li-nonincreasing),
» pure-state quantum: contractions (C-valued,
L,-nonincreasing),
» mixed-state quantum: completely positive
trace-nonincreasing
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Assumption: Internal computation much cheaper than
interaction:

» Workspace W arbitrarily large,
» Circuit complexity of U’ not counted.
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» Explore-exploit tradeoff/Multi-armed bandit
» Quantum/classical time-optimal control
» Robot cooks from fridge
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» Query algorithms, e.g. Grover's algorithm (as internal
computations are cost-free)

» Learning of quantum oracles,

» Classical: Active learning/Optimal experimental design
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Example/Why query model?

» Noone can prove time complexity lower bounds for NP
search problems, but proving n/2 lower bound for classical
or ~ +/n lower bound for quantum search isn't too hard.

» But it still pertains to optimization/search problems! We
can rule out that a quantum algorithm that treats the
search space as a "black box" attains more than a
quadratic speedup.

» The adversary bound is a lower-bound method
generalizing the unstructured search lower bound to other
problems.
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Convex mixtures of SOKs

Given p, p’ € R>¢ and [(|¢X>)xeD]~7 [(W’i))xeD]N €SP,
define (for pure quantum), define:

pL()en).. + P [(W)aeo].. = | (VP I & VP [01))
= |(vplo) @ v + Vo 1) @ )

(for classical: \/p — p, v/p' = p').

» well-defined, + commutative, allows convex
combinations

XGD:| -

XED] ~

» For Gram matrices (pure-state quantum): Regular convex
combinations

» If G, € STP is reachable from Gy € S*P in k queries,
and G| € S*P is reachable from G} in k queries, then
pG: + p'G; is reachable from pGy + p'G{ in k queries as
well by conditional execution
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questions:
1. What combinations of final states (|¢,))
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2. Output condition: What combinations of final states
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2. QOutput condition: What combinations of final states
(I61)) .cp would permit an accurate measurement of
some function f7?

> State conversion problem (Lee et al. 2011 [1]): (How)

can we convert initial states (|¢9)),_p to final states
(|¢XT>)X€D in T queries? j- focus on this
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» Now talking about Gram matrices, but this can be
generalized to general states of knowledge as above

» Suppose that Gt can be reached from Gy in T queries,
i.e. Gg — Gy, G — Gy, ..., Gr_1 — Gt is possible in 1
query each.

» Add initial /final Gram matrices (convexity):
ZJ.T;OI G — ZJ.T:BI Gj + Gr — Gy is possible in 1 query as
well, achieving a Gram matrix change of U;

> Let G := ZJ.T:_OI G;. This is a Gram matrix as well (of

direct sum of intermediate states) and fulfills
1. G — G+ G — Gy possible in 1 query,
2. Diagonal entries G[x,x] < T.
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Adversary bound

> Let G := > ' G;. Then G fulfills

j
1. G— G+ Gy — Go possible in 1 query,
2. Diagonal entries G[x,x] < T (¢24%) = T.
» So the following is a lower bound on the number of
queries needed to transform Gy to Gt:

minimize max G|[x, x]
xeD

(2)

subject to G — G + Gy — Gy possible in 1 query (3)

where G is GM of some state collection.

(4)
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minimize max G[x,x] (5)
x€e

subject to G — G + Gy — Gy possible in 1 query (6)

where G is GM of some state collection. (7)
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Convex optimization duality

minimize max G[x,x] (5)
x€e

subject to G — G + Gy — Gy possible in 1 query (6)

where G is GM of some state collection. (7)

» It turns out this is a convex optimization problem,
more specifically a semidefinite program. By the theory
of convex duality, the optimal value is equal to the
optimal value of a related maximization problem.

» This means that finding any feasible solution to the
maximization problem vyields a lower bound on the
number of queries needed.

» For classical probability theory/mixed-state quantum: Not
so easy, because space is infinite-dimensional
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(Newer) universal algorithm

» Now assume we have some valid G for the optimization
problem (for which G — G + Gr — Gy is possible in 1
query), and try to turn it into an algorithm.

» Assume also that "doing nothing in 1 query”, i.e.
transforming G — G, is possible for all G.

» For any integer T’ > 0, we can transform Gy + G/ T’ to
Gr + G/T'in T’ steps by going in a "straight line":

G G+ (Gr -G
GO—F?—)GO—F (_,Z-/ 0)

G +2(Gr — G G
+ (T’T O)—>...—)GT—|—?.

— Go

» As T’ — oo, initial and final states converge to Gy or Gr.
— Approximate solution of state conversion problem
Go — GT
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Conclusion (Universal algorithm)

» Instead of as a sequence of states/transformations, we
can understand a quantum (query) algorithm as a
sequence of feasible matrices of inner products (Gram
matrices) or equivalence classes of states (states of
knowledge).

» \We may consider/optimize over a " coarse-grained
version” of an algorithm, G.

» Knowing G allows algorithms that approximate the
desired target state.

» Compared to previous universal algorithms: Generalizes to
control algorithms, better prefactor, avoids some
restrictions of previous approaches.

» Idea of the new universal algorithm, compared to older
ones based on states-and-unitaries:

1. Change initial states to more convenient ones in the
"Gram matrix picture”,
2. bound error incurred by that in "states-and-unitaries
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Open problems

» Find other query algorithms from " Gram matrix picture”

» Make SOK algebra for classical states lower-dimensional
(e.g. by law of large numbers)

» Applications, e.g. re-prove quantum Chernoff bound
» Any ideas? Let's have another call :)

» filw+qudent@outlook.com

» Thanks to Alexander Belov



Bonus: Algebra of SOKs/Formalizing reachability

[(¥x) @ [¥))xen]
[(1¥x) ® [¥))xen]

[(Wxa)xen) . + [(1¥5))cen] . :
[()xen] . * [(1¥))en) . -

» Well-defined, commutative, associative and distributive
on the equivalence classes.

v

On Gram matrices: + are entrywise sums/products

» Suppose our oracle O, just emits a new state in each
» This corresponds to transforming SOKs/Gram matrices
G¢ — Gw * Gg
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S (o). (Z e )

qeQ qeQ

(1)) xen] . * [(1¥5))xen) = [(1¥x) @ 15 wen] -

~

» Suppose our oracle O, emits a new state in each query
based on query, i.e. maps Ox =} o 19) (q| @ |0x,q)
» Then states reachable by reversible transformations are

{Z Gypq* Gog | Z Gyq = Gw}

qeQ qeQ

» For control theory: need to generalize partial trace of
Gram matrices
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